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The Challenge of Characterizing Branching in Molecular Species

D.H. Rouvray

Chemistry Department, University of Georgia, Athens, Georgia 30602, U.S.A.

Abstract

A precise definition of the concept of branching as applied to molecular species

has been an objective of chemists for several decades and still remains a challenge

today. Although the problem has been tackled in many ingenious ways, no

completely satisfactory resolution can be said to have been achieved. The reason

for this is that there are two fundamental difficulties confronting the researcher

in this field. These are that (i) a universally agreed definition of branching appears

to be unattainable because ultimately the concept can be defined only in intuitive

terms; and (ii) any mathematical measure used to characterize the branching

in molecular species must also accurately reflect the physicochemical properties

of those species. It also has to be borne in mind that different properties are

known to be associated with different orderings. In this first comprehensive

survey of the field, the current state of the art in characterizing molecular

branching is reviewed and the prospects for future advances are assessed.
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In physical science ... the most important and most fruitful concepts are those

to which it is impossible to attach a well-defined meaning.

H.A. Kramers (1947)

Introduction

In chemistry, frequent use is made of a number of concepts which, in a strictly

mathematical sense, are ill-defined. Examples include the concepts of aromaticity,

complexity, shape and structure, all of which have been widely used to describe

molecular species, yet none of which has been precisely defined. Although this

lack of precision on the part of chemists appears not to have seriously impeded

the progress of chemistry to date, there are signs that precise definitions of

several commonly employed concepts could make an important contribution

to the future development of the subject. Accordingly, we shall focus here on

one such concept, namely the concept of branching in molecular species, and

explore the ways in which it has been approached by both chemists and

O* mathematicians. Graph-theoretical ideas would appear to be highly relevant

in this context, for the problem has already been tackled by several workers

in the mathematical literature [17,32,83,90]. In the molecular graphs used by

chemists to represent chemical species, branching has traditionally been considered

to occur whenever the graphs contained at least one vertex having a valence

greater than two. Moreover, the higher the valence of the vertices, the greater

*. the extent of branching in the species was said to be. This notion has been

' formalized in terms of the valence partitioning of the vertices of molecular

graphs. Nonisomorphic graphs having identical extents of branching were described

[781 as differing in their 'branching content'. Before pursuing such ideas further

-. * here, we now pause to introduce some necessary chemical terminology.

* 1 . : ========== === ========== =================== .: ' :.: : .: " ':::- .,i : = - " : ' .
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For well over a century it has been known [261 that two chemical compounds

which have the same chemical formula may differ in the internal arrangement

, of their atoms. Two such compounds are referred to as chemical isomers; isomers

. always differ from one another in at least one of their physicochemical properties.

Overall, isomers have been classified into two broad categories designated as

constitutional isomers and stereoisomers. Several schemes for the detailed

classification of isomers have been developed in recent years [8,15,83], and at

least 30 different subclasses of isomers are now recognized by chemists [72].

Computer programs for the enumeration of most of these subclasses are also

available [431. Our interest here will focus only on the former category of isomers,

i.e. the constitutional isomers, which have also been widely referred to in the

past as structural isomers [351. We elect not to use this latter term, however,

since, as mentioned above, the term structure is ill-defined in the chemical

context, and in certain of its various meanings the adjective 'structural' has

therefore become somewhat ambiguous. Constitutional isomers may be regarded

as discrete molecular entities whose atoms are bonded together and held at

approximately fixed positions in space relative to one another as a result of the

constraints imposed upon their mutual motions by the bonding interactions [511.

A pair of constitutional isomers must differ in both the sequence and the nature

of the bonding interactions occurring between their respective atoms [43].

- ."In the mid-1850s Cayley [161 first depicted the constitutional isomers of the

members of certain homologous series, namely the alkanes, CnH2n+2, and mono-

substituted alkanes, CnH2n+1X, using graphs. He clearly established that a pair

of constitutional isomers will always be possessed of two nonisomorphic graphs

and that there is a 1:1 correspondence between the alkane isomers having n atoms

and the relevant tree graphs on n vertices. The relevant tree graphs in this case

are allowed to have a maximum vertex degree of four. Cayley also enumerated
"°-,

4.|
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the isomers for the first several members of each series; later workers have

subsequently corrected (where necessary) and-substantially extended these early

results [73,431. We shall consider only alkane species here, for these species

conveniently exemplify the nature of the problems we propose to discuss in this
-

* - -paper. The numbers of isomers for several different members of the alkane

series are presented in Table 1. Given that the valence of the carbon atom is

four and that of the hydrogen atom is one, it is easy to demonstrate that alkane

species contain the maximum ratio of hydrogen to carbon of all the hydrocarbons

- [75]. For our purposes it will be sufficient to represent the alkanes by their carbon

backbones and to ignore the hydrogen atoms, which can usually be inferred without

. difficulty and which in any case are nonessential in that they are not structure-

determining. Graphs depicting only the carbon skeleton of hydrocarbon species

"" are widely used in mathematical chemistry and are referred to as

l hydrogen-suppressed graphs. "1LE -rN

In this first comprehensive review on the mathematical description of molecular

branching, we shall highlight the problem of characterizing in a chemically

* meaningful way the hydrogen-suppressed graphs of members of the alkane series,

CnH2n+2. Ideally, such characterizations should satisfy two criteria, viz. (i)

they should be unique in purely graph-theoretical terms, and (ii) they should

accurately reflect the physicochemical properties of the species being

*i characterized. It is fair to point out that it is not possible to satisfy both of

these criteria simultaneously at present. Although it is certainly feasible to

characterize species uniquely, e.g. by means of their adjacency matrix or by

some appropriate code [82], characterizations of this kind are not only unwieldy

but, more importantly, they usually fail to provide a sufficiently reliable

description of the physicochemical and other properties. On the other hand,

all of the simple numerical descriptors of species which have been employed

* . .

-
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to date have subsequently been shown to be nonunique. The problem chemists

are confronted with is thus a challenging one and no completely satisfactory

solution appears to be in sight. Over the past decade, however, steady progress

* has been made and some important new insights ha,e been gained. It is our purpose

now to review the current state of the art in the characterization of molecular

i:; - branching though, in an effort to keep the number of literature citations down

to manageable proportions, only key references will be given. We set the scene

by first exploring the question whether it is feasible to attempt to characterize

* branching in purely mathematical terms.

The Measurement of Branching

Virtually all of the physicochemical properties of alkane species are either

greatly influenced by or substantially dependent upon the degree of branching

* .present in their constituent molecules. One notable-example of such a property,

* -which has very important commercial implications, is the octane rating assigned

to fuels used in automobiles and other vehicles. In effect, the octane rating

of a fuel determines its quality, for the higher the rating the less likely the fuel

will be to self-ignite upon sudden compression in air. The octane rating of an

alkane fuel is directly dependent upon the amount of branching present in its

component molecules (3]. Even from this isolated example, the crucial importance

of the concept of branching to chemistry should be evident. What chemists lack,

however, is some effective means of measuring the amount of branching present

in molecules based on some universally agreed definition. As indicated above,

the notion of branching has traditionally been described in purely intuitive terms

[241, such as the number of vertices of degree greater than two in the chemical

graph. We discuss now whether it is possible to improve upon this seemingly

S. •

* -* -- *- - A *-.l* . * * . -
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unsatisfactory method of interpreting a highly important molecular property.

One approach to the problem favored by chemists in recent years has been

to attempt to order chemical graphs according to some set of well-defined

mathematical criteria. Once such an ordering has been achieved, the second

* - issue of whether the ordering matches any of the orderings based on the various

"-"-physicochemical properties of molecules can then be addressed. Let us start

with a simple Cedankenexperiment. If we consider two tree graphs, one in the

form of a path and the other in the form of a star, it is immediately obvious

which of the two is more branched. Thus, any scheme we may devise to order

*" branched molecular species must always give precedence to the star graph over

the path graph. When comparisons of certain other pairs of tree graphs are made,

however, intuition is no longer sufficient. For instance, it is by no means obvious

which of the three graphs illustrated in Figure 1 is more branched, even though

the molecules they represent can certainly be ordered hierarchically in terms

of their physicochemical properties. Numerous other equally indeterminate

examples might be cited. We now explore the contribution which ordering can

*make to the solution of problems of this type, bearing in mind that most ordering

procedures merely define a hierarchy but do not assign absolute values to the

degree of branching present in molecular species.

- - The Ordering of Structures

Any ordering of structures necessarily implies that comparisons have to be

made. In the chemical context, the comparisons are frequently made between

sequences of numbers which are used to identify the structures they represent.

The numbers chosen might be integers; one convenient way of obtaining these

is to take the vertex degrees of the hydrogen-suppressed graphs arranged as

.4-",
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a nonascending sequence, i.e. vi > yj+l for all i 1,2,..., (n - 1). Two sequences

of numbers of the same length are said to be comparable if there exists an

inequality between them for all intervals defined by the values of the variables.

Comparability can be tested for by constructing sequences of partial sums. To

illustrate this, let us suppose that the two sequences are V {vi} and V' =_{v-'}

Now, for all theyi and vi' these sequences will be comparable only if V > V' or

* V < V' for all the intervals. Muirhead [14,151 defined a relative ordering for

such sequences by imposing the conditions:

k k
i- vi > vi' ,where 1 < k < n (1)

=1-i=1 -

and

n n

. v  Z -. . (2)
i- - i1-

Whenever these conditions are satisfied, sequence V is said to precede sequence
* V'.

Such criteria were first introduced into the chemical literature by Gutman

and Randic [301, who applied them to the ordering of alkane isomers. They were

able to show that a complete ordering is possible for all such isomers having

n < 7, whereas for n > 8 only a partial ordering can be achieved. It is thus not

legitimate to compare certain pairs of isomeric structures havingn > 8 since

Muirhead's conditions [501 are not fulfilled in all cases. The three structures

illustrated in Figure 1 are not comparable, for instance, since for all i we have

vi = vi', that is to say the sequence to be compared equals 32222111 for each

of these isomers. Later refinements of these conditions have not brought any

significant improvement. Thus, the generalized conditions of Karamata [40,7],

-9 ' i~ i . ° ' - . ,,. .. i .l

- ~ -



iL -8-

which removed the restricticn that only integers be used in the sequences, certainly

made the comparison of sequences of real, nonintegral numbers possible, though

the drawback of having a number of noncomparable pairs of structures in the

* -set still remained. Randic [59] indicated how this difficulty might be alleviated

to some extent by the use of additional information in the form of several new

partial sums derived for the sequences. This expedient, however, did not

satisfactorily resolve the problem.

From a different vantage point, an equivalent approach to that of Randic

[591 has emerged in recent years. In a fundamental study of the phenomena of

- chirality in molecules, Ruch [79,771 made use of Young diagrams [891, which

were subsequently shown to have relevance not only in the interpretation of

chirality but in several other areas as well, including the study of molecular

branching [80,341. When used for this latter purpose, Young diagrams are

constructed by ordering the vertex degrees of graphs in a nonascending sequence

as described above. The graphs are then depicted by arrays of square boxes in

which each of the rows represents a single vertex and the number of boxes in

a given row is determined by the degree of the relevant vertex. The Young

- .diagrams for the three isomers shown in Figure 1 will all be based on the vertex

sequence 32222111 and are thus all identical, as is apparent from Figure 2. The

* 4 fact that these three isomers correspond to the same diagram makes the

limitations of the approach manifest. Clearly, only a partial ordering-will be

possible by this means, for the ordering which results is precisely the same as

* " that attained by the use of Muirhead's criteria [78]. Accordingly, there is no

special advantage to be gained by adopting this particular approach to ordering;

we shall therefore not discuss it further here. 2

A more promising approach to the ordering of graphs was put forward by

Randic and Wilkins [681, who used paths of differing lengths as the basis for
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their procedure rather than vertex degrees. In the tree graphs of alkane species,

the enumeration of the various paths present in the graphs is straightforward.

In the case of the 18 octane isomers, the result of the enumeration is presented

in tabular form in Table 2. For reasons of convenience, Randic and Wilkins [681

ordered these isomers in terms of the pair of numbers (P2, P3), representing

respectively paths of lengths two and three. Strictly speaking, a septuple rather

than a pair should have been used to account for all the paths present, though

even their simplistic approach produced a surprisingly good ordering. The various

isomers were positioned on a grid according to their (P2, P3) values as illustrated

in Figure 3. The conditions invoked for the actual ordering were that two

structures were comparable only if P2 I P2' and P3 < P3'; whenever these conditions

were satisfied, the points on the grid corresponding to the two structures were

connected. The ordering attained by this method is again only a partial one,

and two of the 16 points on the grid correspond to structures having identical

(P2, P3) values. One of the identical pairs is the 3-methylheptane and

4-methylheptane pair, illustrated in Figure 1. It should be pointed out, however,

that if all paths had been used in the ordering process, a complete ordering of

*. all the 18 isomers would have been possible since no two isomers have all their

-path length sequences identical. The approach was later extended to the sets

"4 of alkane isomers having n = 9 (the 35 nonanes) [691 and n = 10 (the 75 decanes) T 2_

[641 with similar results.

.IThe Encoding of Molecules

All of the methods discussed so far for discriminating among isomers have

depended upon the use of numerical codes, namely upon sequences of nonascending

vertex degrees or upon sequences of path numbers. In this section we shall briefly



-10-

examine codes which provide a unique 'characterization of species. We shall

again confine the discussion to alkane molecules, and say little about various

other, nonu-iique codes which have been put forward for species characterization.

In fact, we can only touch upon the subject here, for the study of codes covers

*so vast an area that it deserves a separate review by itself. Now, it is widely

recognized [57] that the use of some standard numbering procedure for the vertices

*ii .of graphs would render the problem of establishing the isomorphism of a pair

-of graphs an essentially trivial one. Once such a procedure has been devised,

. - each of the graphs may then be represented by a so-called canonical matrix and

this permits an ordering of those graphs e.g. by lexicographical ordering of the

matrices.

Since the adjacency matrix is known [18] to characterize any graph it represents

up to isomorphism, many workers have focused attention on this particular matrix.

The adjacency matrix, A(C), which may be defined as follows:

A(G) = ai.=0 (3)

aj (_i,j e(G)

aij 1 (,j ee(G)

041 where e(G) is the edge set of C, can be written out in the form of a binary number

by reading the rows sequentially from left to right and from top to bottom.

Standard forms of presenting A(G) have been sought which would yield either

the maximum or the minimum binary number using this representation. The

problem has been examined from a variety of different standpoints, including

those of Nagle [521, who proposed a general linear ordering relation for graphs

041 to derive the canonical matrix; Randic [57,62], who devised canonical labeling

schemes for graphs based upon A(G) and who went on to apply these notions to

• °,-~~~~~~~...-..........,-.-.......-,. - .-. ......-- ...-. ........... i - ..-.... :-.-
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the study of topological symmetry [62,53]; EI-Basil and coworkers [23,221, who

- utilized codes based on the traces of A(G)k where 1 < k < n, to characterize

both cyclic and noncyclic organic molecules; and Herndon and Leonard [361, who

extended the concepts of canonical labeling and unique linear notation to organic

and inorganic polyhedral cluster compounds.

To illustrate the types of code which can be derived from canonical labeling,

we now consider the approach of Randic [57,621 in some detail. Since any graph

on n vertices will have a total of n! possible labelings, the three tree graphs in

" Figure 1 will have 8! possible labelings. To reduce this large number, some

algorithm is necessary to devise a labeling which will yield a binary number of

4r minimum value without screening all the n! possibilities. Initially, Randic [621

suggested that the labeling be obtained simply by permuting the rows and columns

of A(G) two at a time, starting with a graph having arbitrary labeling. It was

later demonstrated by MacKay (451, however, that such a procedure can result

S".in trapping in a local minimum, and is thus not foolproof. A more satisfactory

-..- procedure, also developed by Randic [571, involved carrying out operations on

*A(G) to ensure that its first row would have the maximum number of zeros in

- it and that these would precede ones whenever possible. In terms of graph

labelings, this implies that the smallest label (1) should have as its immediate

neighbors vertices bearing the largest labels (n, n - 1, etc.). After treating the

first row of A(G) in this way, the second and subsequent rows are then dealt

S- with in the same manner. In general, this can be accomplished without difficulty,

0 for the procedure is a very efficient one [57]. Examples of the canonical labelings

and resulting codes for the three isomers of pentane (C5 H1 2 ) are depicted in
,"F1 4"?-

Figure 4.

We conclude this section by making brief mention of a newly developed unique

code, known as a compact code. The evolution of this type of code can be traced
1.4
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back at least two decades. Hiz [391 introduced the idea of linearizing chemical

graphs in the form of codes called ciphers, which omitted all extraneous chemical

information pertaining to the species represented. Knop et al. [421 developed

those ciphers for the purpose of enumerating the classes of molecules originally

studied by Cayley [161, namely the alkanes, CnH2n+2, and the substituted alkanes,

CnH2n+1X. Recently, Randic [551 demonstrated how these ciphers could be

* - adapted to the labeling of various molecules having tree graphs. The compact

code is constructed by locating the vertex (vertices) of highest degree (degrees)

" -and then writing nonascending vertex degree sequences for all the paths emanating

from such vertices. The various sequences are concatenated into one code

according to their lengths, with the longest being written down first. For the

three alkane isomers in Figure 1, the codes now differ and assume the forms

32222111, 32221211, and 32212211. Not only is the code useful for ordering

species, but direct reconstruction of the chemical species represented is also

possible, for a 1 can be interpreted as a primary carbon atom or methyl group

(CH 3 ); a 2 as a secondary carbon atom or methylene group (CH 2 ); a 3 as a tertiary

carbon atom or a methyne group (CH); and a 4 as a quarternary carbon atom

(C).

The Use of Polynomials and Eigenvalues

An important graph invariant now being increasingly used in the

characterization of molecular branching is the characteristic polynomial, PG(x),

which is defined as (- 1 )fn det I A(G) - xE(G) , where E(G) is the unit matrix

for the graph G. Various methods for the evaluation of PC(x) have recently been

discussed by Randic [61]. Although this polynomial has long been known not to

- provide a unique characterization of graphs [17], it has remained of interest

- '"

.......................................
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to chemists because the ccefficients of PC(x) may be obtained from certain

combinations of subgraphs comprised of disjoint edges or cycles (801. These

subgraphs are clearly related to the numbers of random and self-returning walks

in G, and also to the nonadjacent number and cycle counts. This fact led Randic

[561 to explore the idea of representing PG(x_) in terms of summations of the

polynomials of paths on n vertices, Ln(x), as defined in equation (4). In the case

of the three isomers in Figure 1, the PG(x) assume the forms (a) L 9 - L5 ; (b)

L9 - L5 - L3; and (c) L 9 - L5 - L3 - L 1 . The coefficient of L5 was found to reflect

the number and type of substitutions occurring on the main chain: for a methyl

(CH 3 ) substitution it takes the value -1; for methyl substitutions at two different

atoms -2; for dimethyl substitution on the same atom -3; for disubstitution on

one atom and monosubstitution on another atom -4; for tetramethyl substitution

-5; and for one tetramethyl substitution and two other single substitutions -6.

An explicit closed form for Ln(x) polynomials was originally presented by

Collatz and Sinogowitz [17] as follows:

[n/2] n-
Ln(X)= -_ - ) x n - 2k. (4)

k=O k

From this expression, it is evident that the Ln(x) may be written as Chebyschev

polynomials in x/2. Several prescriptions for discerning the general form assumed

- by the Ln(x) for various families of structures based on the graphs of alkane

isomers were put forward by Randic [56]. These prescriptions were generalized

by Hosoya and Randic (37], who derived a number of closed expressions and who

pointed out, for instance, that xD. can be formulated as:

(n/21
n- 2k_- n+lt1•,x.n =n 2k (- ) n 2k .(5)

k=O n+l k -

Til.. . . -. ..... .... .-. . .. . . ... ...-- --. - .... .-..-. -... --- L. . - ".i L , .
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The regrouping of the terms in these expansions of PG(x) renders the patterns

for the individual coefficients obvious in many cases. Thus, by focusing attention

on families of structurally related graphs, it is possible to utilize PG(x) for the

purpose of characterizing such graphs. The expansion based on Chebyshev

-polynomials can also be used in those cases in which PG(X) exhibits sets of

identical spectra for pairs of nonisomorphic graphs.

Isospectral graphs have been investigated for many years and numerous

references can be cited in the mathematical [17,32,83,901 and chemical 161,91,651

literature. Such graphs have received attention from chemists principally because

the eigenvalues of chemical graphs correspond to the quantum-mechanically

allowed energy levels within the species represented [46]. Our interest here,

however, stems from the observation of several authors [17,44,31,11] that the

" degree of branching in a graph is closely related to its maximum eigenvalue,

X1, frequently referred to as the spectral radius. Cvetkovic and Gutman [19]

were the first to demonstrate that x may be expressed in terms of the total

number, w(k), of walks of length k in a graph C by means of the following

* approximate formula:

w(k) n (x,1 ,= . (6)

-: The approximation becomes an equality only in the case of regular graphs.

The result in equation (6) represents an interesting relationship between a

.- ,-,spectral property ( X1 ) and a combinatorial property (w(k)) of a graph, and thereby

confirms the empirical finding that X 1 provides a reliable measure of branching

in molecular graphs. Moreover, since X,1 satisfies the inequality:

-. ' -Y m in  Y 1 < m a x  ,(7 )@4--

9'ill
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it may be interpreted 19] as a kind of mean vertex degree for the graph G. Lovasz

and Pelikan [44] were able to prove that if all trees on n vertices are ordered

r
according to their X1 value, the path will occupy the first position (minimal

X1 ) whereas the star will occupy the final position (maximal X1) in the sequence.

The three molecules illustrated in our Figure 1 are differentiated in terms of

their respective X1 values, having the values (a) 1.950, (b) 1.989, and (c) 2.000.

.. " It should be reiterated, however, that neither A'1 nor the complete set of

eigenvalues {X n} offers a unique characterization of G. Thus, the graphs of

3-ethylpentane and-2,4-dimethylpentane have identical X1 values, and the two

graphs illustrated a, the top of Figure 5 have identical sets of eigenvalues,{An n.

C4

Graph Invariants as Branching Descriptors

In the discussion of graph invariants many of the diverse lines of thought

introduced above find their natural intersection. We are concerned here only

* with those invariants which have been used specifically for the correlation of

molecular structures with physicochernical properties. Although a wide variety

of invariants has been employed for this purpose over the past four decades,

it is only during the last few years that their great importance to chemistry

has been fully appreciated [54]. Nowadays, graph invariants are usually referred

to in the chemical literature as topological indices; for convenience, we shall

refer to them here simply as indices. In recent years a steady stream of indices

has emerged, allegedly providing an increasingly reliable characterization of

molecular branching. We shall focus especially on the newer indices and the

claims made for them, for it is neither feasible nor appropriate here to review

comprehensively the vast field of topological indices; interested readers are

referred to several detailed reviews on the subject [11,49,74,2.
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The first graph invariant to be used in chemistry was introduced in 1947 by

Wiener [881, and is commonly referred to nowadays as the Wiener index, W(G).

The index was originally defined as the sum of the chemical bonds existing between

all pairs of carbon atoms in a molecule, and later shown [381 to be equal to one

half the sum of the entries in the relevant distance matrix, i.e.:

n n

W(G) = (G). (8)
-= 1 j= U

W(G) has been widely used to model the physicochemical properties of chemical

. species, such as boiling point and refractive index [761. Although the index gives

good correlations for species having unbranched graphs, when branched species

are included the results are not nearly as satisfactory. This is well illustrated

by the plot in Figure 6, which reveals the wide scatter in the points for the 75

decanes (C10 H2 2) when the boiling point is plotted against W(G). In fact, the

correlation coefficient for linear regression turns out to be only 0.0035! Moreover,

W(G) is associated with a fairly high level of degeneracy; a pair of trees having

identical W(G) values are shown in Figure 5. F1 V (0

Since the time of Wiener, strenuous endeavors have been made to devise

better indices than W(G). The first major advance came in 1971 when Hosoya

[38] introduced an index of the form:

"n/21

Z(G) = p(C,k) , (9)

. . . . "
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where p(G,k) is the number of ways in which k edges can be chosen from C such

that no two of them are adjacent; by definition p(G,O) = 1 and p(G,1) = ne, the

number of edges in G. For trees, the characteristic polynomial and Z(G) are

- interrelated, and this polynomial can be expressed in terms of the P(C, k) as

follows:

[n/2

SPG=T(X) = (-). p(G, k) x 2- 2k (10)

k =0

Gutman (291 has shown that Z(G) is particularly well suited to reflect the

alternations in boiling point in monomethyl alkanes as the methyl group is displaced

' along the main carbon chain. The index suffers from the drawback, however,

that it too displays a high level of degeneracy i.e. it is far from being one-to-one,

for the classes of graphs of interest here.

'The first index specifically designed to be of low degeneracy was the molecular

connectivity index of Randi [581. This has proved to be a highly successful index

"- in that it is the most widely used of all indices propounded so far; moreover it

*is the only index to have had a whole book devcted to it [41]. The index was

designed with the intention of characterizing branching in chemical species and

is based on the notion of edge types in molecular graphs. An edge is said to be

of type (v 1, v?) if the two end vertices of the edge have degrees v1 and y_2

.- respectively. In formal terms, the index may be defined by the relationship:

ne
o.X = Z (vi'zj)T ,(11)

e=1

where the summation extends over all e edges, and ne is the total number of
*1

edges in C. To date, the index has been used in a vast number of correlations

ranging from the prediction of physicochemical properties to the design of drugs

"~~~..-............. . .. ...... ,............ .. .. .- ,......... ""....',...-......,
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[411. Its degeneracy is moderately low [721.

Because of the low degeneracy of X(G) and its great value in correlational

studies, several attempts have been made to extend its range of usefulness. The

first proposal put forward [411 envisaged summing over paths of different lengths

instead of choosing paths of length one. This idea led to the introduction of

a whole range of X (C) indices designated as 0 x(G), 1X (G), 2 x (C), 3 x(G), etc.

for paths of length zero, one, two, three, etc. The index defined above should

thus more correctly be referred to as 1 X (C). The generalized index, Lx (G) may

be defined by the equation:

, *l Xh(G) = [ [Vl(a )X2() .... Yh+( )- ' (12)
IT

where ir extends over all paths of length h and vi(T) denotes the valence of the

ith vertex on path 7r, with 1 < i < h+1. The !Ix (G) index is, of course, also derivable

from the hth power of A(G). Each of the Lx (G) will give a different weighting

for the contributions made by primary (CH 3 ), secondary (CH 2 ), tertiary (CH),

* and quarternary (C) carbon atoms. The basic purpose of such indices is to give

prominence to the contributions from adjacent and nearby atoms (vertices) and

to deemphasize those which are further away, in accord with chemical intuition.

"Q The x (G) indices have moderately low degeneracies, and 1X (G) correlates highly

(0.98) with W(G) [581.

Further means of elaborating such indices have also been examined in the

* 'chemical literature. Thus, Balaban [681 put forward an index known as the distance

'.- sum connectivity index, JC), which is defined as follows:

J(G) = ne 2( i (13)
ne-n. 2

4-
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where ne is the number of edges in G, and .i represents the sum of the entries

in the ith row of the distance matrix D(G) for C. The degeneracy of J(C) has

been shown to be very low; in alkane graphs the first degenerate pair encountered

has n = 12 vertices [5]. Following several earlier studies on the characterization

of graph vertices in terms of their path numbers [54,58,91, Randic [601 proposed

combining the x(C) with path numbers. This resulted in an index having a very

low degeneracy known as the molecular identity number, MID. The first pair

of alkane trees with identical MID numbers has 16 vertices [63].

Approaching the Ultimate Coal

The success in developing ever more discriminating indices with lower and

lower degeneracies, has prompted several researchers to pose the question: can

a simple, graph-theoretical, numerical descriptor be derived which will be unique,

- -.at least for the classes of graphs of interest to chemists? Although much progress

has been made on the difficult task of characterizing alkane trees uniquely by

means of such an index, this ultimate goal seems to be a very elusive one.

Numerous conjectures put forward over the years postulating that certain indices

-- including the Randic MID number -- were unique have subsequently been proved

to be invalid [85,871. In spite of this, new conjectures continue to be made. For

instance, it has recently been conjectured (11 that if distance sums and path

numbers were used in the MID number instead of vertex degrees and path numbers,

the degeneracy would vanish. The search for unique indices will almost certainly

be continued for many years to come. Below we touch upon some of the more

novel approaches which have been explored recently and which are claimed to

lead to highly discriminating, if not unique, descriptors for alkane tree graphs.

e-q.
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The use of random walks on trees has been investigated by Randic et al. [701

and Barysz and Trinajstic [6]. The former workers used random walks to

characterize graphs by enumerating all the walks for every individual vertex.

Attempts were then made to decide which factors were critical in determining

the walk counts, and to locate isospectral vertices in graphs. Unusual walks,

i.e. walks for nonequivalent sites which have the same counts, are of fundmental

importance in the study of isospectral graphs. These facts were exploited by

the latter workers to establish a 1-1 correspondence between trees and a code

called the ordered structural code [6]. This code distinguishes even isospectral

graphs. The code, which is claimed to be unique, can be used for calculating

the coefficients of the characteristic polynomials of trees and for demonstrating
0*°

the dependence of the spectral moments on the various tree structures. Spectral

moments are obtained by summing the diagonal elements of (A(G))k for each

k, and correspond directly to the count of all self-returning walks of length k

in a given molecular graph.

Information theory has played a role in the development of new topological

indices for many years. Recently, a book devoted solely to this subject has

appeared [101. One of the most successful information-theoretical index in terms

of its discriminating power is the so-called mean information on distance equality

index, defined as follows [131:

E m
I (G) = 1 2k9. log 2  (14)

D n(n-1) n(n-1)]

where the distance I appears 2k times in the distance matrix D(G) for the graph

C and m is the greatest value of Z. Another very successful index is the so-called

graph distance complexity index advanced by Raychaudhury et al. [711, which

is based on an average information measure for C. Even though both display

)-' "
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high discriminatory power for alkane trees, it was postulated by Bonchev et al.

[13] that an effective practical solution to the problem of discrimination would

be the introduction for a superindex. Such an index is simply a sum of several

separate topological indices. Using a superindex based on six topological indices,

Bonchev et al. (13] achieved complete discrimination of a set of 427 graphs of

chemical interest.

"- .An index which is of extremely low degeneracy, and which has the advantage

of being easily obtainable, is based on the hierarchically ordered extended vertex

connectivities in G. The algorithm used to calculate the index, commonly referred

to as the HOC algorithm [47], starts with a partitioning of the vertices of G

into equivalence classes according to their degrees. Additional discrimination

is built into each of the classes by means of vertex extended connectivities,

i.e. sums of vertex degrees of the nearest neighbors. For equal extended

connectivities, further discrimination is introduced via the sequences of the

degrees, arranged in ascending order. The newly formed equivalence classes

are assigned ranks that increase with the extended connectivities and their ordered

summations. These ranks are then used for the iterative recalculation of the

extended connectivities; the whole procedure is terminated when the same ranks

appear after two consecutive steps. The approach represents a natural extention

of Morgan's [48] algorithm which forms the basis of Chemical Abstracts coding

system, and is analogous to a procedure of Randic and Wilkins [671, based on

sequences of path numbers, in that it can be employed for the recognition of

* structural similarity in molecular graphs.

The Chemical Ordering of Branched Species

" Our earlier discussion has revealed that molecular graphs can in general be

-. , . ' i,'-- .. " . , " . ~ . . .- . " - ,
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partially ordered in purely mathematical terms according to their degree of

branching. Moreover, if the two graphs Gj and Gk within a given class (hereI -
alkane graphs) can be associated with the numbers rj and t'k in such a way that

i > Fk whenever it is decided G-is more branched than Gk, a measure of the

branching is implied. We may now enquire whether such a measure accords with

the ordering of these graphs based on the observed physicochemical properties

of the molecules ccncerned. If the graphs in a particular class of graphs are

associated with so many different values of a property over a given interval

that they may be interpreted as representing a continuum of properties, the

theorem of Karamata [401 can be applied. Karamata's theorem, which is valid

for continuous and convex functions defined on a sequence of numbers, permits

conclusions to be drawn concerning the relative magnitudes of the function if

the relative magnitudes for the terms in the sequence are known. Using some

U well-selected subgraph structures to yield a numerical sequence, it thus becomes

possible to predict the relative magnitudes of molecular properties of interest.

*This was accomplished by Randic et al. [69,64,681 for the alkane isomers up to

n = 10. The selected graph invariants were paths of different lengths (especially

of lengths two and three) and the physicochemical parameters ranged from boiling

points through thermodynamic properties to refr3ctive indices. In all cases the

trends established by mathematical ordering corresponded with those based on

..physicochemical properties. This demonstrated that grid diagrams represent

a convenient device for the ordering and prediction of properties, and established

* 'the significance of the underlying conceptual framework. Apparent inconsistencies

or errors in the raw data are clearly revealed using this approach [681.

A different way of interpreting the behavior of branched alkane species is

that based on the additive nature of most of their physicochemical properties.

This way has been exhaustively investigated by Gordon and Kennedy [27,251,
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who postulated the idea of expressing all measurable parameters of a chemical

system in terms of a linear combination of graph-theoretical invariants. Such

a derived parameter, M, can be represented by the summation:

M = i Ni (15)P. - -.

where the a i are coefficients, and the N i are appropriate graph invariants. This

simple formulation effectively summarizes all the manifold additivity schemes

which have been proposed in the chemical literature over the past century [271.

It should be borne in mind, however, that the approach is a purely graph-theoretical

one and that properties governed by stereospecificity or precise geometry will

be beyond its scope. Even with this restriction, the value of equation (15) is

beyond doubt, for it has been established [25] that each parameter analyzed in

this way becomes stable to the introduction of further invariants beyond a certain

S-" point. The stable values can readily be calculated and used for comparisons

- of properties derived from mathematical ordering.

* The N i in equation (15) are, of course, topological indices and some of the

indices mentioned above have been employed in this type of analysis. In particular,

paths of different lengths have been widely featured [861. Trends in more complex

tocological indices with branching have also been presented by several workers.

Thus, for the Wiener index, W(G), Bonchev and Trinajstic [141 have given detailed

mathematical expressions for the variation in the value of W(G) with the differing

types of branching encountered in alkane species. In the case of the Hosoya

index, Z(G), a composition principle was given [38] from which it was apparent

that Z(G) depends on certain subgraphs of C for alkane isomers. Randic6s molecular

connectivity indic', hx (G), have also been investigated [41,72] with a view

.. to interpeting their dependence on various graph invariants. In general, however,

. .--...
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topological indices do not give good correlations with the physicochemical

properties of branched species.

In an attempt to overcome this problem with topological indices, Bonchev

and Mekenyan [12] introduced the concept of the comparability graph for the

ordering of alkane and other isomers. The comparability graph is constructed

for a complete set of isomers by making use of known rules of structural

complexity, e.g. those put forward by Bonchev and Trinajstic [141. Each rule

serves to partially order the isomers by expressing trends which occur in various

topological indices as systematic changes to the structure of the isomers are

made. In such graphs, the vertices correspond to individual isomers and the

directed edges to isomer interconversions. The paths in these oriented graphs

specify the ordering of the vertices; isomers associated wi-h different graph

paths are taken to be noncomparable. Combined comparability graphs based

on several different topological indices were set up for alkane isomers with n

=7 (the heptanes) and n =8 (the octanes), including a total of 20 physicochemnical

properties. The majority of properties followed the predicted ordering; those

showing the greatest deviations were the critical temperature, the Antoine

equation coefficient, surface tension, molecular volume density, molecular

refraction and refractive index. These properties may well depend on

@4 graph-theoretical -actors not included in the invariants used in constructing

the comparability graph, and also on stereochemical and geometrical effects.

A similar approach based on the degree of structural similarity of pairs of isomers

* # has recently been put forward by Grossman [28].

Conclusion

o

:-'-i: The problem of characterizing branching in a completely satisfactory way

;9):~
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to the physical scientist is likely to remain unsolved for the forseeable future.

*The two main reasons for this are that (i) the notion of branching is an essentially

intuitive one, and (ii) in general different physicochemical properties seem to

require different orderings of sets of isomers. Thus, in spite of many highly

" . ingenious approaches to the quantification of branching in molecular species,

only a partial ordering can be attained in most cases. Such partial orderings

are based on mathematical criteria such as those of Muirhead [501, and are

appropriate for certain physicochemical properties, but by no means all of them.

The latter properties are probably not dependent to the same extent on the

molecular connectivity as the former, and in addition may also be strongly

influenced by geometric or stereochemical factors. At present it is not possible

to characterize molecular graphs uniquely in terms of graph invariants, but several

invariants have been showr to possess high discrimination ability. Codes, however,

based on the adjacency matrix, A(G), of the graph are able to provide unique

characterizations of molecular graphs, although these are rather unwieldy and

therefore unsuitable for most chemical correlations.
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Captions for Tables

Table 1. Number of alkane constitutional isomers (trees) for various values of

n, the number of carbon atoms.

Table 2. Number of paths of length i with (1 < i < 7) for the alkane isomers having

n = 8 (the octanes)$

Caotions for Figures

Figure 1. Hydrogen-suppressed graphs of the octane isomers (a) 2-methylheptane,

(b) 3-methylheptane, and (c) 4-methylheptane.

a" -

- Figure 2. The n'onascending vertex degree sequence and Young diagram for

- each of the three isomers in Figure 1.

Figure 3. Grid of the 18 octane isomers showing an ordering based on the number

of paths of length two (P2) and of length three (p3) in each.

0 4 Figure 4. Canonical labelings and canonical codes for the three pentane isomers.

Figure 5. Pairs of hydrogen-suppressed alkane graphs displaying identical indices

* ,of varying kinds.

Figure 6. A scatter plot of boiling point against Wiener index, W(G), for the

75 decane isomers.
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1 1

2 1
3 1

79

8 18

9 35

10 75

20 366319

30 4111846763

40 62481801147341

50 1117743651746953270

7 7

10 75

• Table 1: Number of alkane constitutional isomers (trees) for various

. °.-values of n, the number of carbon atoms.
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N e of MNumber of Paths pi of Length i*i Name of Molecule Graph p p p 4  p 6 p
PI P2 P3 P4 P5 P6 P7

2,2,3,3 -Tetramethylbutane 7 12 9

*]- 2,2,4 -Trimethylpentane e .I7 10 5 6

2,2,3-Trimethylpentane 7 10 8 3

• 2,3,3-Trimethylpentane 7 10 9 2

2,3,4-Trimethylpentane 2 7 9 8 4

2,2-Dimethylhexane 7 9 5 4 3

3,3- Dimethylhexane 7 9 7 4 1

2,5- Dimethylhexane 7 8 5 4 4

2,4-Dimethylhexane 7 8 6 5 2

2,3-Dimethylhexane 7 8 7 4 2

3-Methyl-3-Ethylpentone 7 9 9 3

S 2-Methyl-3-Ethylpentane 7 8 8 5

3,4-Dimethylhexane ,_j,_... 7 8 8 4 1

2-Methylheptane 2 7 7 5 4 3 2

3-Methylheptane 2 7 7 6 4 3 1

* 4-Methylheptane . 7 7 6 5 2 1

3-Ethylhexane 7 7 7 5 2

n-Octane -- :tU -- 7 6 5 4 3 2 1

" ." . - . . - ". .
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